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Finite-size corrections in theXXZ model and the
Hubbard model with boundary fields

Hitoshi Asakawa and Masuo Suzuki
Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

Received 17 July 1995

Abstract. TheXXZ model and the Hubbard model with boundary fields are discussed. Using
the exact solutions of the present models, the finite-size corrections of the ground-state energy
and the low-lying excitation energies are calculated. The partition functions are also evaluated
in the scaling limit. Through this calculation, the conformal weights of the primary fields in the
present model are obtained.

1. Introduction

Recently, by using the finite-size scaling technique [1–3] based on conformal field theory
[4], critical properties of one-dimensional quantum systems have been investigated, see
for example [5–7]. In almost all of these investigations, one-dimensional systems under
the periodic boundary condition are focused. On the other hand, in recent years, various
integrable models on an open chain with boundary terms have been studied by the Bethe
ansatz [8–11].

In the present paper, we discuss quantum systems on a chain with boundary fields, by
using the finite-size scaling technique based on boundary conformal field theory (CFT) [12].
According to the boundaryCFT, the partition function of a quantum critical system on the
open chain withL sites is described as [13]

Z ≡ Tr e−Ĥ /T =
∑
h

Nhχh (1.1)

where Ĥ is the Hamiltonian of the relevant system, from which we subtract the terms
of order L and L0. The symbol Nh takes a non-negative integer, which depends
on the boundary state. The symbolχh denotes the character of the highest-weight
irreducible representation of the Virasoro algebra. We describe the conformal weight of
the corresponding primary field byh. The character takes the following form:

χh = q−c/24+h
∞∑
N=0

dh(N)q
N (1.2)

where the symbolc denotes the central charge. We describe the degeneracy of the states
at theN th level asdh(N). The above relation holds in the scaling limitq ∼ 0, precisely.
Therefore, by evaluating the partition function in the scaling limit, we can recognize the
operator contents of the relevant model, namely which primary fields exist in the present
model.
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In our previous paper [14], we discussed the operator contents of theXY model with a
uniform magnetic field and a boundary field. We found that theXY model with a boundary
field gives a representation of the shiftedU(1) Kac–Moody algebra [15]. In the previous
work, we not only evaluated the partition function but also constructed the generators of
the algebra by the operators in theXY model.

In the present paper, we discuss the operator contents of theXXZ model and the
Hubbard model with boundary fields. Through this discussion, we find that each sector of
these models also gives a representation of the algebra.

In section 2, we briefly review the exact solution of theXXZ model with a boundary
field. The present model has been solved by Alcarazet al [16] and Sklyanin [8]. In
section 3, we derive the exact solution of the Hubbard model with a boundary field. In
section 4, we evaluate the finite-size corrections for the energy of the presentXXZ model.
This calculation has been partially performed by Hamer and co-workers [17, 18]. In this
sense, part of the contents of section 4 is a rederivation of their result, though our scheme is
different from theirs. In section 5, we evaluate the finite-size corrections for the energy of
the present Hubbard model. Using the result obtained in sections 4 and 5, we calculate the
partition functions of the models in section 6. Through the form of the partition functions
thus obtained, we discuss operator contents of the models in section 7. We also evaluate
the surface critical exponents of classical systems corresponding to the present quantum
systems with boundary fields.

2. Exact solution of theXXZ model with a boundary field

In the present section, we briefly review the exact solution of theXXZ model with a
boundary field.

In the present paper, we discuss theXXZ model with a boundary field described by
the following Hamiltonian:

H = − 1
2

L−1∑
j=1

(σ xj σ
x
j+1 + σ

y

j σ
y

j+1 +1σzj σ
z
j+1)− 1

2p(σ
z
1 + σ zL)+ 1

21(L− 1) (2.1)

where the symbolσαj denotes theα-component of the Pauli matrices at sitej . We describe
the length of the chain byL, which is assumed to take an even integer. We introduce a
parameterγ as follows,

1 = − cosγ γ ∈ [0, π). (2.2)

Alcarazet al [16] solved this model by the coordinate Bethe ansatz. Sklyanin [8] also
solved it by the algebraic Bethe ansatz. Alcarazet al introduced the following Bethe ansatz
wavefunction [16]:

ψ(x1, . . . , xM) =
∑
P

εPA(kP1, . . . , kPM) exp

(
i
M∑
j=1

kPjxQj

)
(2.3)

where

1 6 xQ1 < · · · < xQM 6 L (2.4)

where the sum extends over all permutations and negations ofk1, . . . , kM and εP takes a
sign factor (±1) and changes its sign at each such ‘mutation’. Thus, they obtained the Bethe
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ansatz equation

2Lφ(ηj , γ /2) = 2πIj − 2φ(ηj , 0)+
M∑
l=1
(l 6=j)

(φ(ηj − ηl, γ )+ φ(ηj + ηl, γ ))

j = 1, . . . ,M (2.5)

where

e2i0 = p −1− eiγ

(p −1)eiγ − 1
φ(η, γ ) = 2 tan−1(cot(γ ) tanhη). (2.6)

Here,Ij takes a positive integer. The eigenenergy is given by

E =
M∑
j=1

2(1− coskj )− p kj = φ(ηj , γ /2). (2.7)

3. Exact solution of the Hubbard model with a boundary field

In the present section, we derive the exact solution of the Hubbard model with a boundary
field.

We discuss the Hubbard model with a boundary field described by the following
Hamiltonian:

H = −
L−1∑
σ,j=1

(c
†
jσ cj+1σ + c

†
j+1σ cjσ )+ U

L∑
j=1

nj+nj− + µ

L∑
j=1

(nj+ + nj−)

−p+(n1+ + nL+)− p−(n1− + nL−) (3.1)

where the symbolcjσ (c†jσ ) denotes the annihilation (the creation) operator of an electron

with spin σ at sitej . The number operator of an electron is defined bynjσ ≡ c
†
jσ cjσ . We

describe the length of the chain byL, which is assumed to take an even integer. We discuss
the present model withU > 0.

We assume the following wavefunction:

ψσ1,...,σN (x1, . . . , xN) =
∑
P

εPAσQ1,...,σQN (kPQ1, . . . , kPQN) exp

(
i
N∑
j=1

kPjxj

)
(3.2)

where

1 6 xQ1 6 · · · 6 xQN 6 L. (3.3)

The sum extends over all permutations and negations ofk1, . . . , kN andεP takes a sign factor
(±1) and changes its sign at each such ‘mutation’. We can evaluate scattering matrices as
follows:

A...σj ,σi ...(. . . kj , ki . . .) = Sij (ki, kj )A...σi ,σj ...(. . . ki, kj . . .) (3.4)

Aσi,...(−kj , . . .) = sL(kj ;pσi )Aσi,...(kj , . . .) (3.5)

A...,σi (. . . ,−kj ) = sR(kj ;pσi )A...,σi (. . . , kj ) (3.6)

where

Sij (ki, kj ) = ηi − ηj + i2uPij
ηi − ηj + i2u

(3.7)

sL(kj ;pσ ) = (s(kj ;pσ ))−1 sR(kj ;pσ ) = s(kj ;pσ )eikj2(L+1) (3.8)
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with

ηj = sinkj u = U

4
s(kj ;pσj ) = 1 − pσj e

−ikj

1 − pσj e
+ikj

. (3.9)

Here, the operatorPij interchanges the spin variablesσi and σj . We note that using
equations (3.4)–(3.6) we show that their ‘mutant’ relationships also hold, which are obtained
from (3.4) by negations of{kj } and from (3.5) and (3.6) by permutations or negations of
{kj }.

By using these matrices, we obtain the following relationship:

A...σj ...(. . . kj . . .) = TjA...σj ...(. . . kj . . .) (3.10)

where

Tj = S−
j (kj )s(kj ;pσj )R−

j (kj )R
+
j (kj )s(kj ;pσj )S+

j (kj )e
ikj2(L+1) (3.11)

with

S+
j (kj ) = SjN(kj , kN)× · · · × Sjj+1(kj , kj+1) (3.12)

S−
j (kj ) = Sjj−1(kj , kj−1)× · · · × Sj1(kj , k1) (3.13)

R−
j (kj ) = S1j (k1,−kj )× · · · × Sj−1j (kj−1,−kj ) (3.14)

R+
j (kj ) = Sj+1j (kj+1,−kj )× · · · × SNj (kN,−kj ). (3.15)

Here, we defineS−
j = R−

j = I (the identity matrix) forj = 1 andS+
j = R+

j = I for j = L.
Therefore, we can obtain the (nested) Bethe ansatz equations by solving the following
eigenvalue problem:

Tj t = 1 × t j = 1, . . . , N (3.16)

where the symbolt denotes an eigenvector on the space of the spin variables. Detailed
derivations from (3.2)–(3.16) are shown in the appendix. In the appendix, we give some
examples of the Bethe ansatz wavefunctions for a few particles so that we can check the
validity of the ansatz.

In the remaining part of the present paper, we restrict the boundary field to the following
case:

pσ = p for σ = ±. (3.17)

Then, sinces(kj ) does not depend on the spin variable, we only have to diagonalize the
matrix S−

j R
−
j R

+
j S

+
j . This problem has been solved by Schulz [19] in the discussion on

the free-boundary case, namelyp = 0. We remark that this problem is also solved by the
algebraic Bethe ansatz for an open chain [8]. Immediately, we can write the Bethe ansatz
equations as follows:

eikj2(L+1)s2(kj ;p) =
M∏
β=1

ηj − λβ + iu

ηj − λβ − iu

ηj + λβ + iu

ηj + λβ − iu
(3.18)

N∏
j=1

λα − ηj + iu

λα − ηj − iu

λα + ηj + iu

λα + ηj − iu
=

M∏
β=1
(β 6=α)

λα − λβ + i2u

λα − λβ − i2u

λα + λβ + i2u

λα + λβ − i2u

j = 1, . . . , N and α = 1, . . . ,M (3.19)

where we assume thatN takes an even integer. The eigenenergy is given by

E =
N∑
j=1

(µ− 2 coskj ). (3.20)
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We rewrite the present equations in the following form:

2Lkj = 2πIj − 2(kj + θ0(kj ;p))−
M∑
β=1

(
2 tan−1 ηj − λβ

u
+ 2 tan−1 ηj + λβ

u

)
(3.21)

N∑
j=1

(
2 tan−1 λα − ηj

u
+ 2 tan−1 λα + ηj

u

)

= 2πJα +
M∑
β=1
(β 6=α)

(
2 tan−1 λα − λβ

2u
+ 2 tan−1 λα + λβ

2u

)
j = 1, . . . , N and α = 1, . . . ,M (3.22)

where

θ0(k;p) = 1

i
logs(k;p). (3.23)

Here,Ij andJα take integers.

4. Finite-size corrections of theXXZ model with a boundary field

In the present section, we evaluate the finite-size corrections for the spectrum of the present
XXZ model (2.1), by using Woynarovich’s scheme [5]. This calculation has been partially
performed by Hamer and co-workers [17, 18]. In this sense, part of the contents of section 4
is a rederivation of their result, though our scheme is different from theirs. At the end of
this section, we explain the relationship between their result and ours.

We rewrite the Bethe ansatz equation (2.5) for the present model as follows:

zL(ηj ) = Ij

L
j = −M, . . . ,M (4.1)

zL(η) ≡ 1

π

{
p0(η)+ 1

L
q0(η)− 1

2L

M∑
j=−M

φ(η − ηj , γ )

}
(4.2)

where

p0(η) = φ
(
η,
γ

2

)
and q0(η) = φ(η, 0)+ 1

2φ(2η, γ )+ 1
2φ(η, γ ). (4.3)

Here, we recognizeη−j as−ηj . When we describe the maximum and minimum values of
{Ij } as I+ and I−, respectively, we can introduce the integration boundaries3+ and3−

by the following equations:

zL(3
+) = 1

L
(I+ + 1

2) and zL(3
−) = 1

L
(I− − 1

2). (4.4)

In the present model, we find that the relationship3+ = −3− (I+ = −I−) holds.
We define a density of roots{ηj } as follows:

σL(η) ≡ d

dη
zL(η) (4.5)

= 1

π

{
d

dη
p0(η)+ 1

L

d

dη
q0(η)− 1

2L

M∑
j=−M

K(η − ηj )

}
(4.6)

where

K(η) ≡ d

dη
φ(η, γ ). (4.7)
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Here, we introduce an integration operatorK for a functionx(η) as follows:

K3+(η|η′)x(η′) ≡ − 1

2π

∫ 3+

−3+
dη′K(η − η′)x(η′). (4.8)

Moreover, we define an inner product for functionsx andy by

(x, y) ≡ 1
2

∫ 3+

−3+
dη′ x(η′)y(η′). (4.9)

Then we find that the following relationship holds:

(y,Kx) = (Ky, x). (4.10)

By using the Euler–Maclaurin formula, we can expandσL as

σL(η|3+) = σ (0)(η|3+)+ 1

L
τ(0)(η|3+)− 1

24L2

1

σL(3+|3+)
ρ(0)(η|3+)

+K3+(η|η′)σL(η′|3+)+ o

(
1

L2

)
(4.11)

where

σ (0)(η|3+) = 1

π

d

dη
p0(η) τ (0)(η|3+) = 1

π

d

dη
q0(η) (4.12)

and

ρ(0)(η|3+) = 1

2π
(K ′(η −3+)−K ′(η +3+)). (4.13)

Here,K ′ denotes a derivative ofK. Moreover, we can obtain the following form:

σL(η|3+) = σ(η|3+)+ 1

L
τ(η|3+)− 1

24L2

ρ(η|3+)
σL(3+|3+)

+ o

(
1

L2

)
(4.14)

where

σ(η|3+) = σ (0)(η|3+)+ K3+(η|η′)σ (η′|3+) (4.15)

τ(η|3+) = τ (0)(η|3+)+ K3+(η|η′)τ (η′|3+) (4.16)

and

ρ(η|3+) = ρ(0)(η|3+)+ K3+(η|η′)ρ(η′|3+). (4.17)

We note that the formal solution of the following integration equation:

x(η|3+) = x(0)(η|3+)+ K3+(η|η′)x(η′|3+) (4.18)

is given as

x(η|3+) =
∞∑
n=0

Kn
3+(η|η′)x(0)(η′|3+). (4.19)

We can expand the energy spectrum (2.7) of the present model with respect to the
powers of 1/L, using the density of roots (4.14)

E

L
= 1

L

M∑
j=1

2(1− coskj )− p

L
(4.20)

= ε(3+)+ 1

L
ϕ(3+)− 1

24L2

e(3+)
σL(3+|3+)

+ o

(
1

L2

)
(4.21)
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where

ε(3+) = (εd, σ
(0)) (4.22)

ϕ(3+) = (εd, τ
(0))− p − 1

2ε0(0) (4.23)

and

e(3+) = d

d3+ ε0(3
+)+ (ε0, ρ) (4.24)

with

ε0(η) = 2(1− cosk) = −2 sin2 γ

cosh 2η − cosγ
(4.25)

and

εd(η|3+) =
∞∑
n=0

Kn
3+(η|η′)ε0(η

′). (4.26)

Here, we have used the relations1 = − cosγ andη = sink. The symbolεd denotes the
dressed energy of the present model.

If the energyE is minimized for3+ = 3 in the thermodynamic limit, the parameter
3 is determined by

d

d3+ ε(3
+) = 0. (4.27)

This equation is equivalent to

εd(3
+|3+) = 0. (4.28)

This relationship is the same as the corresponding condition in the periodic-boundary case.
Therefore, we find that3 = ∞. We remark that the relationship

d

d3+ ϕ(3
+) = 0 (4.29)

also holds for3+ = 3. Moreover, we find

d2

d3+2
ε(3+)

∣∣∣∣
3+=3

= e(3)σ(3|3). (4.30)

Then, we obtain the following form as the expansion of the energy spectrum around the
ground state:

E = Lε(3)+ ϕ(3)+ 1

L

e(3)

σL(3|3)(
1
2L

2(3+ −3)2(σ (3|3))2 − 1
24)+ o

(
1

L2

)
. (4.31)

Taking ∫ 3+

−3+
σL(η) dη = 2M + 1

L
(4.32)

into account, we find that the following relationship holds for3+ −3 infinitesimal:

(3+ −3)σ(3|3)L = 1

ξ(3)
(1M −2(p)) (4.33)

where

2(p) ≡ π − γ − 20

2(π − γ )
= 1

2(π − γ )

{
tan−1

(
tanγ

1 − R(p)

)
− γ

}
(4.34)
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with

R(p) = 2p

1(1 − (p −1)2)
. (4.35)

Here, the symbol1M denotes the deviation ofM from its grand-state value, namelyL/2,
and takes an integer. The symbolξ expresses the dressed charge, which is defined as

ξ(η) =
∞∑
n=0

(K3)
n1. (4.36)

Since this definition is the same as that of the corresponding value in the periodic-boundary
case, we know that it takes the following form [5]

ξ ≡ ξ(3) = 1√
2(1 − γ /π)

. (4.37)

Here, we evaluate the sound velocity of the present modelvs. Using the Bethe ansatz
equation (2.5), we obtain the following relationship:

M∑
j=−M

kj = π

M∑
j=−M

Ij

L
. (4.38)

From this equation, we can recognize the dressed momentumpd(ηj ) asπIj/L. Therefore,
we can evaluate the sound velocity as follows:

vs = dεd(η)

dpd(η)

∣∣∣∣
η=3

= e(3)

πσ(3|3). (4.39)

This quantity seems to be twice as large as the corresponding value in the periodic-boundary
case [5]. However, this velocity is equal to that of the system with the periodic boundary
condition, since this density of roots is twice as large as that of the periodic-boundary case
[5]. In fact, we obtain the following form:

vs = π sinγ

γ
. (4.40)

Summing up the above discussions, we can describe the energy spectrum around the
ground state as follows:

E(1M) = Le∞ + f∞ + πvs

L

{
1

2

(1M −2(p))2

ξ2
− 1

24

}
+ o

(
1

L

)
(4.41)

where

e∞ = ε(3) and f∞ = ϕ(3). (4.42)

We can express these quantities as follows:

e∞ = 1

2

∫ +∞

−∞
dλ

sin2 γ

cosh 2γ λ− cosγ

1

coshπλ
(4.43)

and

f∞ = −p + π

2

sinγ

γ
+

∫ +∞

−∞
dη ε0(η)(τ1(η)+ τ2(η)) (4.44)

with

τ1(η) = 1

2π

∫ +∞

−∞
dω

sinh( 1
2ωπ − ω0)

sinh 1
2ωπ + sinh( 1

2ωπ − ωγ )
e−iωη (4.45)

τ2(η) = 1

2π

∫ +∞

−∞
dω

cosh1
4ωπ sinh( 1

4ωπ − 1
2ωγ )

sinh 1
2ωπ + sinh( 1

2ωπ − ωγ )
e−iωη. (4.46)
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In order to obtain the complete form of the low-lying spectrum, we consider a particle–
hole excitation in the vicinity of the Fermi surface. We describe a particle–hole pair

zL(ηp) = Ip

L
and zL(ηh) = Ih

L
. (4.47)

By introducing the following half-odd numbersnp andnh,

Ip = I+ + 1
2 + np and Ih = I+ + 1

2 − nh (4.48)

we characterize a particle–hole excitation by the positive integer

nph ≡ np + nh. (4.49)

Since the presence of this particle–hole pair modifiesσL by
ηp − ηh

L
ρ(η|3+) (4.50)

this excitation changes the energy by

nph

L

e(3+)
σL(3+)

. (4.51)

If several pairs of particle and hole exist, we have to replacenph by N+, where

N+ =
∑

all pairs

nph (4.52)

is a non-negative integer.
Finally, we obtain the energy spectrum around the ground state as follows:

E(1M,N+) = Le∞ + f∞ + πvs

L

{
1

2

(1M −2(p))2

ξ2
− 1

24
+N+

}
+ o

(
1

L

)
. (4.53)

Here, 1M takes integers andN+ takes non-negative integers. For a givenN+, the
degeneracy is given by Euler’s partition numberP(N+). Hamer and co-workers [17, 18]
evaluated finite-size corrections of the ground-state energy for a given1M. Our result
E(1M, 0) coincides with theirs.

5. Finite-size corrections of the Hubbard model with a boundary field

In the present section, we evaluate the finite-size corrections for the spectrum of the present
Hubbard model (3.1), by using Woynarovich’s scheme [6].

We rewrite the Bethe ansatz equations (3.21) and (3.22) for the present model as follows:

zc
L(kj ) = Ij

L
and zs

L(λα) = Jα

L
j = −N, . . . , N and α = −M, . . . ,M (5.1)

zc
L(k) ≡ 1

π

{
k + 1

L
p0(k)+ 1

2L

M∑
β=−M

2 tan−1

(
sink − λβ

u

)}
(5.2)

zs
L(λ) ≡ 1

π

{
1

L
q0(λ)+ 1

2L

N∑
j=−N

2 tan−1

(
λ− sinkj

u

)
− 1

2L

M∑
β=−M

2 tan−1

(
λ− λβ

2u

)}
(5.3)

whereu = U/4 and

p0(k) = k − tan−1

(
sink

u

)
+ θ0(k;p) and q0(λ) = tan−1

(
λ

2u

)
. (5.4)
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Here, we recognizek−j as −kj and λ−α as −λα. When we describe the maximum and
minimum values of{Ij } ({Jα}) asI+ andI− (J+ andJ−), respectively, we can introduce
the integration boundariesk+ andk− (λ+ andλ−) by the following equations:

zc
L(k

+) = 1

L
(I+ + 1

2) and zc
L(k

−) = 1

L
(I− − 1

2) (5.5)

and

zs
L(λ

+) = 1

L
(J+ + 1

2) and zs
L(λ

−) = 1

L
(J− − 1

2). (5.6)

In the present model, we find that relationshipsk+ = −k− (I+ = −I−) and λ+ = −λ−

(J+ = −J−) hold.
We define the densities of roots{kj } and{λα} as follows:

σ c
L(k) ≡ d

dk
zc
L(k) (5.7)

= 1

π

{
1 + 1

L

d

dk
p0(k)+ 1

2L

M∑
β=−M

K1(sink − λβ) cosk

}
(5.8)

and

σ s
L(λ) ≡ d

dλ
zs
L(λ) (5.9)

= 1

π

{
1

L

d

dλ
q0(λ)+ 1

2L

M∑
j=−M

K1(λ− sinkj )− 1

2L

N∑
β=−N

K2(λ− λβ)

}
(5.10)

where

K1(x) ≡ 2u

u2 + x2
and K2(x) ≡ 4u

4u2 + x2
. (5.11)

Here, we introduce an integration operatorK for a two-component functionx =
(xc(k), xs(λ))T as follows:

Kk+λ+(k, λ|k′, λ′)x(k′, λ′) (5.12)

≡


cosk

2π

∫ λ+

−λ+
dλ′K1(sink − λ′)xs(λ′)

1

2π

∫ k+

−k+
dk′K1(λ− sink′)xc(k′)− 1

2π

∫ λ+

−λ+
dλ′K2(λ− λ′)xs(λ′)

 .

(5.13)

Moreover, we define an inner product for two-component functionsx andy by

(x,y) ≡ 1
2

∫ k+

−k+
dk′ xc(k′)yc(k′)+ 1

2

∫ λ+

−λ+
dλ′ xs(λ′)ys(λ′). (5.14)

We define a transpose operator ofK as

KT
k+λ+(k, λ|k′, λ′)x(k′, λ′)

≡


1

2π

∫ λ+

−λ+
dλ′K1(sink − λ′)xs(λ′)

1

2π

∫ k+

−k+
dk′ cosk′K1(λ− sink′)xc(k′)− 1

2π

∫ λ+

−λ+
dλ′K2(λ− λ′)xs(λ′)


(5.15)
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so that the following relationship holds:

(y,Kx) = (KTy,x). (5.16)

By using the Euler–Maclaurin formula, we can expandσL = (σ c
L, σ

s
L)

T as

σL(k, λ|k+, λ+) = σ(0)(k, λ|k+, λ+)+ 1

L
τ (0)(k, λ|k+, λ+)

+ 1

24L2

1

σ c
L(k

+|k+, λ+)
ρ(0)1 (k, λ|k+, λ+)

+ 1

24L2

1

σ s
L(λ

+|k+, λ+)
ρ(0)2 (k, λ|k+, λ+)

+Kk+λ+(k, λ|k′, λ′)σL(k
′, λ′|k+, λ+)+ o

(
1

L2

)
(5.17)

where

σ(0)(k, λ|k+, λ+) =
 1

π

0

 τ (0)(k, λ|k+, λ+) =


1

π

d

dk
p0(k)

1

π

d

dη
q0(η)

 (5.18)

and

ρ(0)1 (k, λ|k+, λ+) =
( 0

cosk+

2π
(K ′

1(λ− sink+)−K ′
1(λ+ sink+))

)
(5.19)

ρ(0)2 (k, λ|k+, λ+) =
 cosk

2π
(K ′

1(sink − λ+)−K ′
1(sink + λ+))

−1

2π
(K ′

2(λ− λ+)−K ′
2(λ+ λ+))

 . (5.20)

Here,K ′
1 andK ′

2 denote derivatives ofK1 andK2, respectively. Moreover, we can obtain
the following form:

σL(η|3+) = σ(η|3+)+ 1

L
τ (η|3+)+ 1

24L2

ρ1(k, λ|k+, λ+)
σ c
L(k

+, λ+|k+, λ+)

+ 1

24L2

ρ2(k, λ|k+, λ+)
σ s
L(k

+, λ+|k+, λ+)
+ o

(
1

L2

)
(5.21)

where

σ(k, λ|k+, λ+) = σ(0)(k, λ|k+, λ+)+ Kk+λ+(k, λ|k′, λ′)σ(k′, λ′|k+, λ+) (5.22)

τ (k, λ|k+, λ+) = τ (0)(k, λ|k+, λ+)+ Kk+λ+(k, λ|k′, λ′)τ (k′, λ′|k+, λ+) (5.23)

and for i = 1, 2

ρi (k, λ|k+, λ+) = ρ(0)i (k, λ|k+, λ+)+ Kk+λ+(k, λ|k′, λ′)ρi (k
′, λ′|k+, λ+). (5.24)

We remark that the formal solution of the integration equation

x(k, λ|k+, λ+) = x(0)(k, λ|k+, λ+)+ Kk+λ+(k, λ|k′, λ′)x(k′, λ′|k+, λ+) (5.25)

is given as

x(k, λ|k+, λ+) =
∞∑
n=0

Kn
k+λ+(k, λ|k′, λ′)x(k′, λ′|k+, λ+). (5.26)
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We can expand the energy spectrum of the present model with respect to the powers of
1/L, using the density of roots (5.21)

E

L
= 1

L

N∑
j=1

(µ− 2 coskj ) (5.27)

= ε(k+, λ+)+ 1

L
ϕ(k+, λ+)− 1

24L2
(ε1(k

+, λ+)+ ε2(k
+, λ+))+ o

(
1

L2

)
(5.28)

where

ε(k+, λ+) = (εd,σ
(0)) (5.29)

ϕ(k+, λ+) = (εd, τ
(0))− 1

2(µ− 2) (5.30)

and

ε1(k
+, λ+) = 1

σ c
L(k

+|k+, λ+)

(
2 sink+ − 1

2

∫ k+

−k+
dk′ (µ− 2 cosk′)ρc

1(k
′|k+, λ+)

)
(5.31)

ε2(k
+, λ+) = 1

σ s
L(λ

+|k+, λ+)

(
− 1

2

∫ k+

−k+
dk′ (µ− 2 cosk′)ρc

2(k
′|k+, λ+)

)
(5.32)

with

ε0(k, λ) =
(
µ− 2 cosk

0

)
(5.33)

and

εd(k, λ|k+, λ+) =
∞∑
n=0

KT n
k+,λ+(k, λ|k′, λ′)ε0(k

′, λ′) ≡
(
εc(k)

εs(λ)

)
. (5.34)

The symbolεd denotes the dressed energy of the present model.
If the energyE in the thermodynamic limit is minimized fork+ = k0 andλ+ = λ0, the

parametersk0 andλ0 are obtained by

d

dk+ ε(k
+, λ+) = 0 and

d

dλ+ ε(k
+, λ+) = 0. (5.35)

These relationships are equivalent to

εc(k
+|k+,3+) = 0 and εs(λ

+|k+,3+) = 0. (5.36)

These equations are the same as the corresponding conditions in the periodic-boundary case.
Therefore, we find thatλ0 = ∞. We remark that the relationships

d

dk+ ϕ(k
+, λ+) = 0 and

d

dλ+ ϕ(k
+, λ+) = 0. (5.37)

also hold fork+ = k0 andλ+ = λ0. Moreover, we find

1

σ c
L(k

0|k0, λ0)

d2

dk+2
ε(k+, λ+)

∣∣∣∣ k+=k0

λ+=λ0

= ε1(k
0, λ0)σ c(k0|k0, λ0) (5.38)

and

1

σ s
L(λ

0|k0, λ0)

d2

dλ+2
ε(k+, λ+)

∣∣∣∣ k+=k0

λ+=λ0

= ε2(k
0, λ0)σ s(λ0|k0, λ0). (5.39)



Finite-size corrections in theXXZ and Hubbard models 237

Then, we obtain the following form as the expansion of the energy spectrum around the
ground state:

E = Lε(3)+ ϕ(3)+ 1

L
ε1(k

0, λ0)( 1
2L

2(k+ − k0)2(σ c(k0|k0, λ0))2 − 1
24)

+ 1

L
ε2(k

0, λ0)( 1
2L

2(λ+ − λ0)2(σ s(λ0|k0, λ0))2 − 1
24)+ o

(
1

L2

)
. (5.40)

Taking the conditions∫ k+

−k+
σ c
L(k) dk = 2N + 1

L
and

∫ λ+

−λ+
σ s
L(λ) dλ = 2M + 1

L
(5.41)

into account, we find that the following relationships hold fork+ − k0 and λ+ − λ0

infinitesimal, namely

(k+ − k0)σ c(k0|k0, λ0)L = 1

detξ(k0, λ0)
((1N −2(p))ξ22(λ

0)− (1M −2(p)/2)ξ21(λ
0))

(5.42)

and

(λ+ − λ0)σ s(λ0|k0, λ0)L = 1

detξ(k0, λ0)
((1M −2(p)/2)ξ11(k

0)− (1N −2(p))ξ12(k
0))

(5.43)

where

2(p) ≡ 1
2

∫ k0

−k0
dk θ(k;p) (5.44)

with

θ(k;p) = 1

π

d

dk
θ0(k;p)+ cosk

2π

∫ k0

−k0
dk′ K̄(sink − sink′)θ(k′;p) (5.45)

K̄(x) =
∫ +∞

−∞
dω

e−u|ω|eixω

2 coshuω
. (5.46)

Here, the symbols1N and1M denote the deviations ofN andM from their grand-state
values, and take integers. The symbols{ξij } express the dressed charges, which are defined
as

ξ(k, λ) =
∞∑
n=0

(KT
k0,λ0)

nI (5.47)

where the symbolI denotes the 2× 2 identity matrix. Since this definition is the same as
that of the corresponding values in the periodic-boundary case, we know that it takes the
following form [6]:(

ξ11(k
0) ξ12(k

0)

ξ21(λ
0) ξ22(λ

0)

)
=

(
ξ ξ/2
0 1/

√
2

)
ξ ≡ ξ(sink0) (5.48)

and

ξ(x) = 1 + 1

2π

∫ + sink0

− sink0

dx ′ K̄(x − x ′)ξ(x ′). (5.49)
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Here, we evaluate the sound velocities of the present modelvc andvs, which correspond
to the charge sector and the spin sector, respectively. Using the Bethe ansatz equations (3.21)
and (3.22), we obtain the following relationship:

N∑
j=−N

kj = π

N∑
j=−N

Ij

L
+ π

M∑
β=−M

Jβ

L
. (5.50)

From this equation, we can recognize the dressed momentapc(kj ) asπIj/L andps(λβ) as
πJβ/L. Therefore, we can evaluate the sound velocities as

vc = dεc(k)

dpc(k)

∣∣∣∣
k=k0

= ε1(k
0, λ0)

π
(5.51)

vs = dεs(λ)

dps(λ)

∣∣∣∣
λ=λ0

= ε2(k
0, λ0)

π
. (5.52)

These velocities equal those of the system with the periodic boundary condition [6].
Summing up the above discussions, we express the energy spectrum around the ground

state as

E(1N,1M̃) = Le∞ + f∞ + πvc

L

{
1

2

(1N −2(p))2

ξ2
− 1

24

}
+πvs

L

{
1

2

(1M̃)2

(1/
√

2)2
− 1

24

}
+ o

(
1

L

)
(5.53)

where

e∞ = ε(k0, λ0) and f∞ = ϕ(k0, λ0) (5.54)

and

1M̃ = 1M − 1
21N. (5.55)

In order to obtain the complete form of the low-lying spectrum, we consider a particle–
hole excitation in the vicinity of the Fermi surface. In each sector, we describe each
particle–hole pair as

zc
L(kp) = Ip

L
and zc

L(kh) = Ih

L
(5.56)

zs
L(λp) = Jp

L
and zs

L(λh) = Jh

L
. (5.57)

By introducing the following half-odd numbersnc
p andnc

h, ns
p andns

h,

Ip = I+ + 1
2 + nc

p and Ih = I+ + 1
2 − nc

h (5.58)

Jp = J+ + 1
2 + ns

p and Jh = J+ + 1
2 − ns

h (5.59)

we characterize each particle–hole excitation by the positive integers

nc
ph ≡ nc

p + nc
h and ns

ph ≡ ns
p + ns

h. (5.60)

Since the presence of these particle–hole pairs modifiesσL by

−kp − kh

L
ρ1(k, λ|k+, λ+)− λp − λh

L
ρ2(k, λ|k+, λ+) (5.61)

this excitation changes the energy by

nc
ph

L
ε1(k

+, λ+)+ ns
ph

L
ε2(k

+, λ+). (5.62)
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If several particle–hole pairs exist, we have to replacenc
ph and ns

ph by the non-negative
integersNc

+ andNs
+ defined as

Nc
+ =

∑
all pairs

nc
ph and Ns

+ =
∑

all pairs

ns
ph. (5.63)

Finally, we obtain the energy spectrum around the ground state as

E(1N,1M̃,Nc
+, N

s
+) = Le∞ + f∞ + πvc

L

{
1

2

(1N −2(p))2

ξ2
− 1

24
+Nc

+

}
+πvs

L

{
1

2

(1M̃)2

(1/
√

2)2
− 1

24
+Ns

+

}
+ o

(
1

L

)
. (5.64)

Here,1N and1M̃ take integers andNc
+ andNs

+ take non-negative integers. For a given
Nc

+ (Ns
+), the degeneracy is given by Euler’s partition numberP(Nc

+) (P(Ns
+)).

6. Partition functions

In the present section, we evaluate the following partition function for each model in the
scaling limit

Z = Tr e−Ĥ /T (6.1)

whereĤ is defined as

Ĥ ≡ H − e∞L− f∞. (6.2)

First, we discuss theXXZ model with a boundary field. By using equation (4.53), we
obtain the partition function in the scaling limitq ≡ exp(−πvs/T L) ∼ 0 as follows,

ZXXZ = q−1/24
∑
1M∈Z

q(1M−2)2/2ξ2
∞∑

N+=0

P(N+)qN+ . (6.3)

Here, the degeneracy for a givenN+ is described by Euler’s partition numberP(N+).
Therefore, we can rewrite the partition function in the following form:

ZXXZ = 1

η(q)

∑
1M∈Z

q(1M−2)2/2ξ2
(6.4)

where

η(q) = q1/24
∞∏
n=1

(1 − qn) (6.5)

which is Dedekind’sη-function.
In the same way, by using equation (5.64), we obtain the partition function of

each sector in the Hubbard model in the scaling limitqc ≡ exp(−πvc/T L) ∼ 0 and
qs ≡ exp(−πvs/T L) ∼ 0 as follows:

Zc = 1

η(qc)

∑
1N∈Z

q(1N−2)2/2ξ2

c (6.6)

Zs = 1

η(qs)

∑
1M̃∈Z

q(1M̃)
2/2(1/

√
2)2

s . (6.7)

When γ → π/2 in equation (2.2), theXXZ model approaches theXX model. The
XX model with a boundary field can be solved by using the Jordan–Wigner transformation
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instead of the Bethe ansatz, so that its partition function is evaluated [14]. We can confirm
that the partition function of theXXZ model becomes that of theXX model, namely

ZXXZ(p; γ = π/2) = ZXX(p). (6.8)

(We note that in the present paper the definitions of the boundary field and the function2

are different from those in our previous work [14].) On the other hand, whenγ → 0 in
equation (2.2), theXXZ model approaches the antiferromagneticXXX model. Then, we
find

ZXXZ(p = 0; γ = 0) = Zs. (6.9)

This relationship is plausible, since the spin sector of the Hubbard model has theSU(2)
invariance even ifU is not infinite or the filling is not half.

7. Conformal weights and surface exponents

In the present section, we discuss operator contents in the present models. We also evaluate
the surface critical exponents of the corresponding classical systems.

At first, we remark that each sector of these models gives a representation of the shifted
U(1) Kac–Moody algebra [15] withc = 1. As was discussed in our previous work [14],
we can construct a representation of the algebra by using the chiral Gaussian field so that
we can calculate the partition function as

ZG(R; θ) =
∑
M∈Z

χM/R(θ) χφ ≡ 1

η(q)
q(φ+θ)2/2 (7.1)

whereR denotes a quantization radius of the field and takes a positive number. For the
detailed derivation, see [14]. We describe the character of the irreducible representation in
the algebra byχφ(θ), which corresponds to the primary field with the conformal weight
[15]

1(φ, θ) = 1
2(φ + θ)2. (7.2)

Therefore, we obtain the conformal dimensionality of each primary field in the present
Gaussian field as follows [14]:

1G
M(R; θ) = 1

2

(
M

R
+ θ

)2

M ∈ Z. (7.3)

We compareZG with the partition functions obtained in the preceding sections to obtain

ZXXZ = ZG(R = ξ ; θ = 2/ξ) (7.4)

Zc = ZG(R = ξ ; θ = 2/ξ) (7.5)

Zs = ZG(R = 1/
√

2; θ = 0). (7.6)

Note the definitions of theξ ’s and 2’s, which are different from each other. These
relationships mean that each sector of these models gives a representation of the (shifted)
U(1) Kac–Moody algebra withc = 1. The conformal weight of each primary field contained
in these sectors is given by

1XXZ(n) = 1G
n (R = ξ ; θ = 2/ξ) = 1

2

(n+2)2

ξ2
(7.7)

1c(n) = 1G
n (R = ξ ; θ = 2/ξ) = 1

2

(n+2)2

ξ2
(7.8)

1s(n) = 1G
n (R = 1/

√
2; θ = 0) = n2 (7.9)
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wheren takes integers. We find that the conformal weights in the presentXXZ model and
the charge sector of the Hubbard model vary depending on the boundary fields.

According to Cardy’s argument [13], we can evaluate the surface critical exponentxs

in the corresponding classical system by the following relationship:

E1 − E0 = πv

L
xs (7.10)

where the symbolsE0 andE1 denote the ground-state energy and the first excited energy,
respectively, andv denotes the Fermi velocity in each sector. Taking equations (4.53) and
(5.64) into account, we evaluate the energies of each sector of the present models to obtain
the following common form:

E1 − E0 = πv

L

{
1

2

(
1

R
− |θ |

)2

− 1

2
θ2

}
(7.11)

apart from the higher order corrections. Thus, we obtain

xs = 1

2

(
1

R2
− 2|θ |

R

)
. (7.12)

When the parameterθ changes, depending on the boundary field, the exponent varies as a
function of the field.

8. Summary

We have found that each of the following sectors gives a representation of the shiftedU(1)
Kac–Moody algebra withc = 1:

• theXXZ model with the boundary field;
• the charge sector of the Hubbard model with the boundary field;
• the spin sector of the Hubbard model with the boundary field.
In each case, the parameterθ of the algebra is given as a function of the boundary field.

When the field vanishes,θ becomes zero. On the other hand, the parameterθ in the spin
sector of the present Hubbard model equals zero even if the boundary field is finite. This is
a plausible result, because the boundary field of the Hubbard model does not depend on the
spin of a particle. The conformal dimensions of the primary fields of theXXZ model and
the charge sector in the Hubbard model change as functions of the boundary fields. The
surface critical exponents also depend on the boundary field through the parameterθ .

We have also discussed the operator contents of the supersymmetrict–J model with a
boundary field. The results will be given elsewhere [20].

Appendix

In the present section, we explain how to derive equation (3.16) by giving examples
using a few particles. These examples allow us confirm the validity of the Bethe ansatz
wavefunction (3.2).

We describe a base which spans the Hilbert space of the model (3.1) withN particles
as

|x1σ1, x2σ2, . . . , xNσN 〉 ≡ c†x1σ1
c†x2σ2

. . . c†xNσN |0〉 (A.1)
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where the symbol|0〉 denotes the vacuum. We can express the wavefunction (eigenfunction)
ψσ1,...,σN (x1, . . . , xN) corresponding to the state vector (eigenvector)|ψ〉 with N particles,
in the following way:

ψσ1,...,σN (x1, . . . , xN) = 〈x1σ1, . . . , xNσN |ψ〉 (A.2)

namely

|ψ〉 =
∑

{(xj ,σj )}
ψσ1,...,σN (x1, . . . , xN)|x1σ1, . . . , xNσN 〉. (A.3)

Then, the following eigenvalue equation holds:

H|ψ〉 = E|ψ〉 (A.4)

where the HamiltonianH is defined in (3.1) andE denotes the energy eigenvalue of the
present model. In the present section, we omit the chemical potentialµ from the Hamiltonian
(3.1) for simplicity. Since the numbers of up-spin particles and down-spin particles are
conserved quantities in the present model, we can add the contributions from not only the
chemical potentialµ

∑L
j=1(nj+ +nj−) but also the magnetic fieldh

∑L
j=1(nj+ −nj−) to the

energy eigenvalue after solving the present model.
First, we discuss the case withN = 1. The eigenvalue equation (A.4) yields the

following three equations:

Eψσ (x) = −ψσ (x + 1)− ψσ (x − 1) for x = 2, . . . , L− 1 (A.5)

Eψσ (1) = −pσψσ (1)− ψσ (2) (A.6)

Eψσ (L) = −pσψσ (L)− ψσ (L− 1). (A.7)

We assume the form of the eigenfunction as

ψσ (x) = Aσ (k)e
ikx − Aσ (k)e

−ikx (A.8)

which corresponds to the wavefunction (3.2) withN = 1. From equation (A.5) we obtain

E = −2 cosk. (A.9)

Substituting this value ofE into equations (A.6) and (A.7), we can derive the following
relationships:

Aσ (k)(1 − pσeik)− Aσ (−k)(1 − pσe−ik) = 0 (A.10)

Aσ (k)(1 − pσe−ik)eik(L+1) − Aσ (−k)(1 − pσeik)e−ik(L+1)) = 0 (A.11)

respectively. We can rewrite these equations as follows:

Aσ (−k) = sL(k;pσ )Aσ (k) (A.12)

and

Aσ (−k) = sR(k;pσ )Aσ (k) (A.13)

respectively, where the symbolssL and sR are defined in equation (3.8). The
equations (A.12) and (A.13) correspond to the relationships (3.5) and (3.6) withN = 1.
Then compatibility between (A.12) and (A.13) yields

sL(k;pσ ) = sR(k;pσ ) (A.14)

or, using (3.8) and (3.9),

s2(k;pσ )eik2(L+1) = 1. (A.15)

This relationship is nothing but equation (3.16) withN = 1.
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Next, we discuss the case withN = 2. We consider the following wavefunction with
N = 2:

ψσ1,σ2(x1, x2) =
∑
P

εPAσQ1,σQ2(kPQ1, kPQ2)e
ikP1x1+ikP2x2 (A.16)

where

1 6 xQ1 6 xQ2 6 L. (A.17)

The sum extends over the permutations and the negations ofk1 and k2, andεP denotes a
sign factor (±1) that changes its sign at each such ‘mutation’. ForN = 2, we consider two
sectorsx1 6 x2 andx2 6 x1. Corresponding to these sectors, we takeI (identity) andX
(exchange) as the permutationQ in the wavefunction (A.16). As an example, we explicitly
write the wavefunction withQ = I :

ψI
σ1,σ2

(x1, x2) = Aσ1,σ2(k1, k2)e
ik1x1+ik2x2 − Aσ1,σ2(k1,−k2)e

ik1x1−ik2x2

−Aσ1,σ2(−k1, k2)e
−ik1x1+ik2x2 + Aσ1,σ2(−k1,−k2)e

−ik1x1−ik2x2

−Aσ1,σ2(k2, k1)e
ik2x1+ik1x2 + Aσ1,σ2(k2,−k1)e

ik2x1−ik1x2

+Aσ1,σ2(−k2, k1)e
−ik2x1+ik1x2 − Aσ1,σ2(−k2,−k1)e

−ik2x1−ik1x2. (A.18)

Similarly, the wavefunction withQ = X can also be described as a summation of eight
‘mutant replicas’, according to the definition. Then, the relationship

ψI
σ1,σ2

(x, x) = ψX
σ1,σ2

(x, x) (A.19)

must be satisfied. For this purpose, we assume that the condition

Aσ1,σ2(k1, k2)− Aσ1,σ2(k2, k1) = Aσ2,σ1(k2, k1)− Aσ2,σ1(k1, k2) (A.20)

together with its ‘mutant’ conditions hold, which are obtained by replacingk1 with −k1 or
k2 with −k2.

The eigenvalue equation (A.4) yields some kind of equations, namely

Eψσ1,σ2(x1, x2) = −ψσ1,σ2(x1 − 1, x2)− ψσ1,σ2(x1 + 1, x2)− ψσ1,σ2(x1, x2 − 1)

−ψσ1,σ2(x1, x2 + 1) for x1 6= x2, 2 6 x1 6 L− 1 and 26 x2 6 L− 1

(A.21)

Eψσ1,σ2(x, x) = −ψσ1,σ2(x − 1, x)− ψσ1,σ2(x + 1, x)− ψσ1,σ2(x, x − 1)

−ψσ1,σ2(x, x + 1)+ Uψσ1,σ2(x, x) for 2 6 x 6 L− 1 (A.22)

Eψσ1,σ2(1, x) = −ψσ1,σ2(2, x)− ψσ1,σ2(1, x − 1)− ψσ1,σ2(1, x + 1)− pσ1ψσ1,σ2(1, x)

for 2 6 x 6 L− 1 (A.23)

Eψσ1,σ2(x, L) = −ψσ1,σ2(x − 1, L)− ψσ1,σ2(x + 1, L)− ψσ1,σ2(x, L− 1)

−pσ2ψσ1,σ2(x, L) for 2 6 x 6 L− 1 (A.24)

and other equations which correspond to equation (A.4) with 26 x1 6 L− 1 andx2 = 1,
x1 = L and 26 x2 6 L − 1, x1 = 1 andx2 = L, x1 = L andx2 = 1, x1 = x2 = 1, and
x1 = x2 = L. Substituting the wavefunction (A.16) into equation (A.21), we obtain

E = −2
∑
j=1,2

coskj . (A.25)
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The eigenvalue equations (A.22)–(A.24) with the eigenvalueE (A.25) hold, when the
following conditions are satisfied:

Aσ2,σ1(k2, k1) = sink1 − sink2

sink1 − sink2 + iU/2
Aσ1,σ2(k1, k2)+ iU/2

sink1 − sink2 + iU/2
Aσ2,σ1(k1, k2)

(A.26)

Aσi,σj (k1, k2)(1 − pσie
ik1) = Aσi,σj (−k1, k2)(1 − pσie

−ik1) (A.27)

Aσi,σj (k1, k2)(1 − pσj e
−ik2)eik2(L+1) = Aσi,σj (k1,−k2)(1 − pσj e

ik2)e−ik2(L+1)

for i = 1, 2, j = 1, 2 andi 6= j (A.28)

together with their ‘mutant’ conditions which can be obtained from (A.26) by negations of
{k1, k2} and from (A.27) and (A.28) by permutations or negations of{k1, k2}. Here, we have
used the condition (A.20) for these derivations. We can confirm that the other equations
written below equation (A.24) also hold when these conditions are satisfied. We can rewrite
the relationships (A.26)–(A.28) as follows:

Aσ2,σ1(k2, k1) = S12(k1, k2)Aσ1,σ2(k1, k2) (A.29)

Aσi,σj (−k1, k2) = sL(k1;pσi )Aσi,σj (k1, k2) (A.30)

and

Aσi,σj (k1,−k2) = sR(k2;pσj )Aσi,σj (k1, k2) (A.31)

where the definitions ofS12, sL and sR are given by equations (3.7)–(3.9). Using these
relationships successively, we can derive the following equation:

Aσ1,σ2(k1, k2) = sL(−k1;pσ1)Aσ1(−k1, k2) = sL(−k1;pσ1)S21(k2,−k1)Aσ1(k2,−k1) = · · ·
· · · = sL(−k1;pσ1)S21(k2,−k1)s

R(k1;pσ1)S12(k1, k2)Aσ1,σ2(k1, k2) (A.32)

namely,

Aσ1,σ2(k1, k2) = T1Aσ1,σ2(k1, k2) (A.33)

whereT1 is defined in equation (3.11). In the same way, we can derive the equation

Aσ1,σ2(k1, k2) = T2Aσ1,σ2(k1, k2). (A.34)

Then, we obtain the eigenvalue equations to solve as follows

Tj t = 1 × t j = 1, 2 (A.35)

where the symbolt denotes an eigenvector on the space of the spin variables. This set of
equations is just the same as equation (3.16) withN = 2.

Finally, we discuss the case with generalN . The eigenvalue equation (A.4) yields

E〈x1σ1, . . . , xNσN |ψ〉 = 〈x1σ1, . . . , xNσN |H|ψ〉. (A.36)

For {xj } not taking 1 or L, we can confirm that the wavefunction (3.2) satisfies
equation (A.36) with the eigenvalue

E = −2
N∑
j=1

coskj (A.37)

using the relationship (3.4) together with its ‘mutant’ relationships, similar to the periodic-
boundary case. Whenxj takes 1 orL for ∃j , some terms coupling the boundary field,
namely

−pσjψσ1,...,σN (. . . , xj = 1, . . .) or − pσjψσ1,...,σN (. . . , xj = L, . . .) (A.38)
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emerge on the right-hand side of equation (A.36), as shown in (A.23) or (A.24) for example.
If the relationships (3.5) and (3.6) together with their ‘mutant’ relationships are satisfied,
the following relationships hold:

pσjψσ1,...,σN (. . . , xj = 1, . . .) = ψσ1,...,σN (. . . , xj = 0, . . .) (A.39)

and

pσjψσ1,...,σN (. . . , xj = L, . . .) = ψσ1,...,σN (. . . , xj = L+ 1, . . .) (A.40)

where ψσ1,...,σN (. . . , xj = 0, . . .) and ψσ1,...,σN (. . . , xj = L + 1, . . .) are defined by
equation (3.2) withxj = 0 and xj = L + 1, respectively. Then, we can recognize the
present system with boundary fields as a system with two virtual sites ‘0’ and ‘L + 1’
without boundary fields. We note that each of the virtual sites is not doubly occupied.
This kind of trick has been used by Alcarazet al [16] in solving theXXZ model with
boundary fields. After this interpretation, we can check that the wavefunction (3.2) satisfies
equation (A.36) under the condition (3.4), similar to the periodic-boundary case. In this
way, we can derive the eigenvalue equation (3.16) for anyN .
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